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ON A VARIATIONAL FORMULATION OF A CLASS OF 

THERMAL ENTRANCE PROBLEMS 

S. D. SAVKAR 

General Electric Research and Development Center, Schenectady, N.Y., U.S.A. 

(Received 28 February 1969 and in revisedform 21 October 1969) 

Abatrnet-It is shown that a class of constant property, unsteady, laminar flow thermal entrance problems, 
in which the velocity profile can be considered to be fully developed, may be formulated as a variational 
problem in the Laplace transformed domain. In turn the variational formulation allows the application of 
the powerful Ritz-Gale&in technique to generate approximate solutions. The technique proposed is 
illustrated by an application to the Graetz problem between semi-infinite parallel plates and to the entrance 

problem in which the wall temperature varies sinusoidally. 
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NOMENCLATURE 

kth approximating polynomial co- 
efficient ; 
specific heat ; 
half width of channel between 
parallel plates ; 
equivalent diameter (=4 cross- 
sectional area/wetted perimeter) ; 
kth approximating polynomial 
function ; 
mass velocity ( = p U) 
local heat-transfer coefficient ; 
thermal conductivity ; 
local Nusselt number ; 
average Nusselt number ; 
Laplace transform parameters ; 
Prandtl number ; 
heat flux rate ; 
Reynolds number ; 
temperature ; 
axial velocity component ; 
average axial velocity ; 
Cartesian coordinates, z being axial 
to the flow; 

thermal diffusivity ; 
sinusoidal wall temperature ampli- 
tude ; 

cross-section of the cylindrical 
region r ; 
semi-infinite cylindrical region ; 
non-dimensional Cartesian co- 
ordinates and time ; 
non-dimensional temperature ; 
wall temperature distribution wave 
length 
closed curve in the plane z = 0 
demarcating the region y ; 
viscosity ; 
density ; 
variational parameter ; 
nondimensional axial location, 
also the Graetz number ; 
non-dimensional source function ; 
non-dimensional wave number. 

INTRODUCTION 

IN DESIGNING heat transfer equipment 
involving laminar forced convective heat transfer 
inside tubes and ducts, it is customary to artiti- 
cially divide the tube or duct into two regions, 
the entrance region and the, so called, fully 
developed region. In general, the entrance 
problems are considerably more difficult to 
handle than those in which the thermal and 
velocity fields are assumed to be fully established 
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FIG. 1. Semi-infinite cylindrical region f, 

(including the case of slug flow), that is, un- 
changing in the direction of the flow. The purpose 
of the present paper is to establish that a class of 
thermal entrance problems can be formulated 
in the Laplace-transformed domain as varia- 
tional problems, which in turn allows the 
application of the powerful method of Ritz and 
Galerkin [l] to generate approximate solutions. 
The technique suggested herein is very useful 
especially when dealing either with complex 
geometries and/or boundary conditions not 
conveniently handled by standard techniques. 
Arpaci and Vest [2] had applied this technique 
to problems of diffusion and Sparrow and Siegel 
[7] had previously devised a variational 
principle for thermal entrance problems, but 
had restricted themselves to the steady case. 
The present paper presents a more generalized 
variational formulation applicable to a wider 
class of problems. 

THE VARIATIONAL PROBLEM 

Consider the class of constant property 
thermal entrance problems defined by the 
following formulation consisting of the unsteady 
energy equation : 

with the boundary and initial conditions on the 
temperature e given as 

(8% r, r> 0) = 09 e(?, r, 0, r) = 0, 

0 = jI(n, 5, r) on 62. (2) 

That is wall temperature specified. With refer- 
ence to Fig. 1, equation (1) is defined to hold in 
the semi-infinite cylindrical region F contained 

within the surface a formed by a generator 
parallel to the [ axis and whose base traverses 
the curve n in the plane [ = 0. The planar 
region defined by A is y. The symbol Vie is used 
to define the operator (a2/aq2 + az/at2), thus 
we have neglected axial conduction. The symbol 
“@” defines internal heat sources (for example 
as a result of a radioactive solution or due to 
the passage of a current through an electrolyte, 
etc.). The fully developed axial velocity com- 
ponent is denoted by u*(q, 5). 

The assumption of fully developed velocity 
profile is generally valid for fluids of high Prandtl 
numbers (such as oils) or in those cases where 
the heated section is preceded by an unheated 
hydrodynamic development section. 

Taking the double Laplace transform of 
equations (1) and (2) with respect to r and c, 
defined by 

PCs, 5, c, 4) = $ e-‘* f(tl, & c, r) dr 

.&I, 5, P, 4) = 3 eHPSf(rl, <, 5,q) di I 

(3) 

0 

where the Laplace transformation parameters 
are p and q, we get on rearranging 

B = jon A. 
(4) 

The symbol “ x” over 8 and 9 are meant to 
indicate the Laplace transformed functions. 

We now show that equation (4) is the Euler 
equation of a variational problem. But before 
proceeding with that, it is to be noted that, for 
the sake of simplicity, the discussion here has 
been restricted to the boundary condition of 
prescribed wall temperature. However the two 
other boundary conditions commonly used in 
the analysis of thermal entrance problems, that 
of prescribed heat flux at the wall (83/&r = /3*, 
where atl/an denotes the normal derivative on 
the wall) or a combination of the above two 
(aelan + be = p**) may be treated in a like 
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manner with the proper choice of the functional 
“I” (See Appendix A). 

Consider now the integral 

+(a*~+&*-2% dqdc. 1 (5) 
We seek the functions 0 which subject to the 
condition fl = Z? on 4 lead to a minimum value 
of Z(8). Suppose that i&u, 5, p, 4) is such a function. 
Thus any other function 0 + o$, such that 10 ) 
is sufficiently small and I&, <, p, q) is continu- 
ous together with its first partial derivatives 
with respect to q, l in y and such that I// = 0 on A, 
would lead to 

Z(8 + aIf+) > Z(8) (6) 

or that the variation 61 of the integral, given by 
[dZ(g + a$)/da],,,, is equal to zero. 

61 = [dZ(# + @)/do],,, e = 0. (7) 

That is 

Y 

+2(u*p+q)&-2& dqd{=O. 1 (8) 
Using Green’s formula [3], the first two terms 
may be transformed to obtain 

Y 

+(u*p+q$-8 $dqdt=O. 1 (9) 
The first integral is identically zero since t,+ = 0 
on A. Hence SZ = 0 implies that the second 
integral is equal to zero, for any arbitrary 
function + which is non-zero somewhere in y. 

The only way that is possible is if the integrand 
itself is zero, and since II/ is arbitrary, equation 
(4) is obtained. 

Thus we see that the Laplace transformed 
form of equation (l), with appropriate boundary 
conditions, is identical to the Euler equation 
of the integral I, equation (5). With a variational 
principle established, approximate solutions 
to system (4) may be generated using the Ritz- 
Galerkin technique. 

THE RITZ-CALERKIN APPROXIMATION 

We shall here only present the formal pro- 
cedure used in the RitzGalerkin technique of 
approximation. The details of the mathematical 
problems of convergence, uniqueness of solu- 
tion, etc., that arise can be found in [ 11. 

Suppose 8” represents the nth order approxi- 
mation, then in accordance with Ritz-Galerkin 
procedure 

(10) 
k=l 

where 8, satisfies the nonhomogeneous bound- 
ary condition, 8, = Z? on A and where the set of 
trial functions {&} is relatively complete* in 
the region y and such that the boundary condi- 
tions, B = 0 on A, are satisfied by the remainder 
of equation (10). Then the coefficients a, may 
be determined as the solution to the system of 
“n” simultaneous equations 

k = 1,2,. . . , n (11) 

which results from the substitution of 8” for e” in 
(5) and applying the conditions leading to the 
minimum of the integral I, i.e. 

az 0 aa,,= for k = 1 2 , ,*-*, n. (12) 

The relative completeness condition will 
generally be satisfied in the class of problems 

* See [l] pages 25&262 for further details. 
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posed by choosing the “gk” as either trigono- 
metric functions or polynomials which satisfy 
the boundary conditions. The relative complete- 
ness of the set (gk} is a sufficient condition to 
guarantee that the approximate solution 8,, will 
yield successively closer approximations to the 
minimum of the integral I as n + co and 
lim 8, = 8, where 8 is the exact solution of 
n-m 
equation (4). The approximate solution to 
equations [l) and (2) are obtained by the in- 
version of 0,. 

In order to show the applicability of the 
technique and the method of solution to be used, 
we illustrate the above by obtaining approximate 
solutions to the Graetz problem between infinite 
parallel plates and the entrance problem with 
sinusoidally varying wall temperature. 

RITZGGALERKIN APPROXIMATION TO 
CLASSICAL GRAETZ PROBLEM 

Consider first the classical Graetz problem 
between semi-infinite parallel plates (see Fig. 2). 

FIG. 2. Semi-infinite flat rectangular duct. 

In non-dimensional terms the problem may be 
posed as the determination of the function 8 
governed by the equation : 

(1 - qZ)$ = T$ (13) 

where 

v ^ T-T,, . . Z 

Re =jUdp/p Pr = pep/k. 

The symbols d, To, T,, U signify respectively 
the half width of the channel, uniform entrance 
temperature, uniform wall temperature and the 
average flow velocity (=$ urnax). Re and Pr are 
a Reynolds number and the Prandtl number of 
the fluid whose properties are constant. The 
viscosity, thermal conductivity, specific heat 
density of the fluid are denoted respectively by 

K k, c, and P. 
The appropriate initial and boundary condi- 

tions are 

e(O, ?) = 0, e(r, 1) = 1, (ae/a?j),=, = 0. 

(14) 

Line heat sources 

7) 
8=0 -5 (0) 

v v CJ 0 u 0 0 0 cJ 

AAAAAAAA 
(b) 

SW= I 

FIG. 3. 

Taking the Laplace transform of equation (13) 
with respect to c we get the ordinary differential 
equation 

d28 

@- 
p&l - 12) = 0 (15) 

subject to the conditions 

@A 1) = l/p and (d&dn),=,, = 0. (16) 
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For the set &j choose the linearly independ- 
ent set of polynomials satisfying the homo- 
geneous boundary conditions &p, 1) = 0 and 
(d&d&,=, = 0. 

g, = (1 - $) $‘k-l) k = 1,2,. . . ,n (17) 

and thus seek the approximate solution of the 
form 

8: = l/p + $=p&l - rj’) r/2’k-1) (18) 

Note that & satisfies the boundary conditions 
in (16). For the sake of brevity we reproduce 
here only the key steps in computation and 
those only for the second order approxima- 
tion (n = 2). Thus u1 and u2 will be obtained 
by solving simultaneously the system of equa- 
tions [obtained by applying equation (1 l)]. 

l d28* S[ --+ - pP,* (1 - $) - (1 - ?$) 
d? I 

0 

(1 - f?% 2tk-U&, = 0 k = 1,2. (19) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

FIG. 4. Non~irn~s~o~ temperature plots. 

On carrying out the indicated integration, 
obtain 

(;+&)a, +(;+&)a2 = -$ (20) 

(1 +$jal + (;+3., = -; (21) 
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from which we obtain the following approxima- 
tion for B 

0 = ; f (1 - q2) [-(01906 + 0.0033p) 

+ (0.0382 - 0+X)726 ~)]/(0.457 + 0.174 p 
+ 0*0035 p2). (22) 

Inverting equation (22) with respect to p we get 
as the approximation for 8 : 

8 = 1 + (1 - y2)e-24’7c [sinh (21.9 [) (2.83 q2 

- 1.415) - cash (21.9 0 (2.064 n2 + 0*936)]. 

(23) 

Equation (23) is plotted in Fig. 4, using the 
independent variable (b sometimes referred to 
as the Graetz number 

c Gd2 32 
“+-L-. 

Using the definition of local Nusselt number 

Nu = ~~~=/~ = LI”f&/{( Tw - T*) k) 

=4 de 
0 a? q=1 

(25) 

where d, is the equivalent diameter of the duct 
(=@, we obtain from (23) 

Nu = 8 e-24,7( [3 cosh(21.9 LJ 

- 1.42 sinh (21.9 c)]. (26) 
Equation (26) is compared with the classical 

Graetz solution obtained from [4, 51 in Fig. 5. 
Also shown is the first order solution obtained 
by assuming 8: = l/p + a, (1 - q2) $, which 
yields 

Nu=Texp -z. 
( > 

(27) 

ENTRANCE PROBLEM WITH SINUSOIDAL WALL 
TEMPERATURE DISTRIBUTION 

Consider now the second example which we 
pose as follows : 
Suppose in a given experimental investigation 
we are forced to simulate the uniform wall 
temperature using a series of line heat sources 

or discrete heating strips (see Fig. 3a). As would 
be expected, the wall temperature distribution 
will be non-uniform and spatially cyclic (as in 
Fig. 3b). We wish to determine the effect of this 
non-unifo~ temperature distribution on, for 
example, the measured Nusselt numbers. To do 
this we formulate the problem mathematically 
by using a sinusoidal approximation to the wall 
temperature distribution (as in Fig. 3~). Hence 
we are required to solve equation (13) subject 
to the conditions 

e(o, to = 0, e(L 1) = 1 -t E sin (o[), 

de 0 atl f/=0 

=o (28) 

where E is the dimensionless amplitude of the 
sinusoidal distribution about the mean wall 
temperature (0, = 1) and w is the dimensionless 
wave number defined as 

2& Re Pr 
CO= 

A (2% 

in which /E is the waveIen~h of the assumed 
sinusoid (or physically the spacing between the 
line heat sources). 

An exact solution to this problem can in fact 
be obtained from the constant wall temperature 
solution through the transformation presented 
by Sellers et al. [4] but the calculations involved 
are considerably more involved and have not 
been carried out to date. 

The second order approximation for Nusselt 
numbers (local) obtained by solving equations 
(13) and (28) using the proposed method is 
obtained to be 

Nu = 8 [ep24’7c {cosh(21-90 6 + ,::;.6) 

+ sinh(21*9{) o~~4~9S6 - 142 
( >1 

+ o2 ~~79.6(3a,sia(oi)-43.2cos(uC)~ . (30) 1 
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regl0” E (on a log-mean 
temperature 

t 

Very 
short 
ducts 

FIG. 6. Average Nusselt numbers. 

DISCUSSION OF NUMERICAL RESULTS 

Consider first the Graetz problem. From 
Figs. 4 and 5 it is obvious that the suggested 
technique does indeed yield an approximate 
solution to the Graetz problem over a given 
region and that the higher order approximation 
yields increasingly closer fit. We note in particu- 
lar that the requirement of fitting Nusselt 
numbers or the first derivative at the wall is a 
good deal more severe condition than merely 
approximating the temperature field in 
magnitude. 

Since we have need to define a thermal en- 
trance length, we must first of all define the fully 
developed condition. In the strictest sense, the 
fully developed condition for the constant wall 
temperature boundary condition (8T/& = 0) 
is only reached when the fluid achieves a uniform 
temperature the same as the wall and the process 
is mathematically asymptotic in nature. How- 
ever, if the log-mean temperature difference 
(see [S]) is used to define the average heat- 
transfer coefficient, the average Nusselt number 
in the limit [ --, cc (4 + 0) approaches a value 
of 7.6 (Fig. 6). On this basis we may arbitrarily 
define the entrance region as being the region in 
which the limiting value of the log-mean Nusselt 
number is approached within 1.0 per cent. In 
our problem this condition yields the entrance 

region as corresponding to Cp S: 7 (( Z 1.524). 
In the discussion to follow, we will therefore 
define the entrance region to be $J SL 7. 

With the above definition in mind, the 2nd 
order approximation (for local Nusselt numbers) 
is generally accurate to within 15 per cent in 
all but the initial 3 per cent of the entrance 
region, that is, in the range 4 < 300. The devia- 
tions from the Graetz solution for 4 > 400 are 
considerable, but the error changes sign at 
4 x 5000. It is to be expected that the third 
order approximation will yield a uniformly 
better approximation (although the algebra 
becomes increasingly more formidable). How- 
ever, it is characteristic of the method suggested 
that the solution for very small c (large 41 and 
z will be in considerable error. Despite this 
shortcoming, it is noted that the solutions for 
both the function sought and its first derivative 
can be accurately assessed over a major portion 
of the duct. Indeed the integrated average heat- 
transfer coefficient shows a much better agree- 
ment over a larger range of 4. The average 
coeflicient for the 2nd order solution defined by 

(31) 

=&0*247-0*212e-30~+-@0355e-497~+) 

(32) 
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is compared with the average coefficient ob- 
tained from Sparrow [6] in Fig. 6. The maximum 
error in the range 4 < 3000 (more than 99 per 
cent of the entrance region) is on the order of 
15 per cent and less than 5 per cent in the range 
C#J < 60 (long ducts). 

We turn now to the problem of the sinusoidal 
wall temperature distribution. Using the delini- 
tion in equation (31) we obtain for the average 
Nusselt number 

hwg 4 CM = I 0.659 + 38.42. -- 
r o2 + 479.6 

- ( 0.564 + 38.9--- > e-2435 

a2 + 479.6 

- - --= ( 0.0946 0.483 ) e-46.6[ 

a2 + 479*6 

+ o2 +E47ga6 {6w(l - ~0s (~5)) 
1 

- 86.4 sin (05)) . 
J 

(33) 

Equation (33) is compared with equation (32) 
for a range of wave numbers in Fig. (7) for 
E = 0.5. Equation (33) is again plotted in Fig. 8 

for a fixed value of C$ = 10.0 (c = 1*066), nearly 
fully developed condition, for several E values. 

As is to be expected, maximum deviation 
from the uniform wall temperature case de- 
creases as the wave number (0) + cc and in- 
creases as E increases from 0. Indeed, except for 
the region in the immediate entrance region 
(r$ r lOOO), there is very little difference between 
the solutions for E = 0 and o r 1000. Thus we 
have a “ruleof the thumb” criterion for designing 
the experimental apparatus for the problem 
posed, to minimize errors (if E > 0) o must be 
> 1000. This implies that for a given I/d ratio, 
the Reynolds number (using equivalent dia- 
meter and average velocity) must exceed the 
value given by 

p W , 8 1o00 (WI -4 > IQ 3 2nPr . 
(34) 

This in turn implies that the worst problem will 
occur in tests involving gases (Pr N 1). As a 
case in point, for air, with Pr N 0.72 and A/d = 1. 
the Reynolds number must be greater than or 
equal to roughly 600, and even so the error in the 

E q 0.5 unless otherwise indicated 

I 
'IO 

I I I111111 I I I111111 I III 
30 60 100 300 600 1000 3000 61 

Q 

FIG. 7. Average numbers with wave numbers as a parameter. 

30 
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I- 

/ I I I I I I I I 
0 IO 20 x) 40 50 60 70 80 90 100 

Wave number, w 

FIG. 8. Average Nusselt number vs. wave number for 4 = 10. 

Nusselt number at 4 = 10 and E = 0.1 will 
amount to + 6 per cent. This is an error inherent 
in the system even prior to measurement errors. 

We note that the formulation of the original 
differential equations (1) and (13) fail to account 
for conduction in the z or c direction. Thus the 
solutions so obtained cannot be applied to 
liquid metals (very low Prandtl numbers). 

In conclusion, we have shown that the trans- 
formed thermal entrance problem can be cast 
in a variational form, which in turn allows the 
application of the Ritz-Galerkin approximation 
technique. The technique yields acceptable 
solutions which show an improved accuracy as 
the order of approximation is increased. The 
technique is especially valuable in the case of 
those thermal entrance problems (defined by 
equations (1) and (2)) which are not conveniently 
handled by the classical techniques. Similarly, 
if 8 in equation (1) is interpreted as a concentra- 
tion, the above technique will apply equally well 
to a class of problems of mass transfer. 

Finally, it should be pointed out that the 
method suggested herein is equivalent to the 
application of Galerkin method using the trial 
functions 8 = xAk(r, [) &q, <). For further re- 
lated discussion the reader is referred to the 
discussion by Goodman of Erdogan’s paper [8]. 
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APPENDIX A 

Varational Formulation for the 

Mixed Boundary Condition 

We consider here the case of the mixed condition. We 
wish to show that the equation 

v;Q-(u”p+q)#+&O (A.1) 

is an Euler equation to a variational problem subject to the 
boundary condition 

Consider the functional 

64.2) 

+ (b @ - $** 8) ds. (A.3) 

n 

Then if 8 minimizes I and (8 + aY) is a function such that 

1 e 1 is sufficiently small and Y is continuous together with its 
first partial derivatives in y, we obtain as the variation of 1 
after using the Green’s formula as in equation (8): 

‘I’dqd[=O. (A.4) 

Considering the line integral above we note it may be 
written as 

(A.5) 

Now in view of the boundary condition (A.2), the integral in 
(A.5) is identically zero. Then, in view of the arbitrary nature 
of i/j we obtain (A. 1) as the Euler equation of (A.3) subject to 
the condition (A.2). 

Finally note that b = 0 describes the prescribed heat flux 
boundary condition. The formal procedure of the Ritz- 
Galerkin method hereafter remains the same as section III 
above, only the boundary condition to be satisfied by 
equation (10) is (A.2). 

FORMULATION VARIATIONNELLE D’UNE CLASSE DE PROBLEMES D’ENTREE 
THERMIQUE 

RCum&On montre qu’une classe de problbmes d’ecoulement d’entree thermique laminaire, instationnaire 
et ii proprittes constantes, dans laquelle le profil de vitesse peut Btre considere comme &ant entibrement 
dbveloppe, peut &re formulQ comme un probleme variationnel dans le domaine des transformees de 
Laplace. En outre, la formulation variationnelle permet l’application de la puissante technique de Ritz- 
Galerkin pour obtenir des solutions approchees. La technique propos& est illustrQ par une application 
au probleme de Graetz entre des plaques paralleles semi-infinies et au probleme d’entree dans lequel la 

temperature pa&ale varie SinusoIdalement. 

EINE VARIATIONSFORMULIERUNG FUR EINE REIHE THERMISCHER 
EINLAUFPROBLEME 

Zusammenfassung-Es wird gezeigt, dass eine Reihe von thermischen Einlaufproblemen mit Hilfe der 
Laplace-Transformation als Variationsprobleme dargestellt werden kbnnen. Es handelt sich dabei urn 
Probleme mit instationiirer laminarer Stromung fiir konstante Stoffeigenschaften beidenenes moglich ist 
die Geschwindigkeitsprofile als voll ausgebildet anzusehen 

Die Variationsdarstellung erlaubt such die Anwendung des wirkungsvollen Ritz-Galerkin-Verfahrens, 
urn Naherungslosungen zu erhalten. Das vorgeschlagene Verfahren wird durch die Anwendung auf das 
Graetz-Problem zwischen halbunendlichen parallelen Platten und auf das Eintrittsproblem be1 smus- 

formig sich Lndernder Wandtemperatur veranschaulicht. 

0 BAPBAHWOHHOH ~OPMYJIHPOBKE KJIACCA 3AflAcI )IJlH 
TEHJIOBOf’O Y’IACTKA HA BXOAE 

hEiOT8~a-~OKa3aHO, YTO KJI3CC 33&3~ HeCTa~WOHaPHOrO JIElMAHapHOrO Te'leHMR C 

IIOCTORHHhIMU CBOtiCTBBMEI HaTBPMIIWCKOM BXORHOM yWCTKt?,B KOTOpblXIIpOI@JIb CKOpOCTti 

MOmHO C'IHTPTb IIOJIHOCTbH) pa3BSiTbIM, MOIKHO ~OpMyJfMpOBZiTb KBH BaPA3qHOHHYIO 33AaYj' 
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B obnacm npeo6paaoBaHns nannaca. B CBOIO osepellb, BapnaqMoHHaH @opMynHpoBKa 
noaBomeT npmenmb mouaym TexHnKy Pmsa-ranepKnHa flnH nonysetikm npnbnnmemnx 
pemeadk. IIpeAnolttemiaH TexHnKa nnnmcTpnpyeTcH Ha npmepe aaaaw rpeqa Memay 
llOSQ'6'XKOHWHblMki lIapWIJii3IbHblMM IUlElCTAHaMki II EXtJ.(aYH 0 HaWUIbHOM j'WCTKt2, KOrJ.(a 

TIXlllepaTypaCTeHKEZ MI?HReTCfi IlO CllHyCOt4~ZlJlbHOMy 8aKOHy. 


